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SUMMARY

In this~f+n&V-feehnice+ Report an analagous Bayesian approach

is given to the classical methodology for calculating lower bounds on

system reliability as formulated in the Maximus Handbook of February

1980.-,

For ease of comparison the Maximus format is adhered to as far

as possible. All theoretical work is given in appendices, as is the

description of the computer programs that were developed to facilitate

calculations.-

In addition to the pass/fail test data considered in Maximus the

7 case of exponential times to failure of components is treated.

Key Woras:- Bayejs, lower limits, system reliability,I "

component test data, reduction methods.
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1. INTRODUCTION

It is pertinent to refer to remarks made in the Introduction to

the Maximus Handbook. The first remark recognises the need for

continued research and analysis and that the methodology of Maximus

should be considered as interim in nature. The second remark states

that the limitation is to Classical Statistical Theory and that

extension of the scope of the work to cover Bayesian methods is

deferred.

The present report addresses these two points. Of principal

interest is the Bayesian analog of the Classical Maximus methodology.

However during the course of development, it became necessary to take

a fresh look at the latter and one consequence is that we suggest

improvements to the Lindstrom and Madden method for series systems

and also for the case of repeated components.

It is not surprising that there should be a link between

Classical and Bayesian approaches to reducing component information

to 'equivalent' system information. This is due to the well known

relationship between partial Binomial suns and the Incomplete Beta

function (Chapter 2).

The Bayesian Statistician expresses uncertainty about the

unknown component reliabilities through prior probability

distributions. For any given component the test data is used to

construct a likelihood function which is then combined with the

prior probability distribution, using Bayes' theorem, to give a

[
I)



-3-

posterior distribution of component reliability. The system

reliability is then the appropriate function (the system reliability

function) of component reliabilities. The determination of the

exact system reliability distribution is usually formidably difficult,

hence the search for simple but good approximate methods, including

the reduction methods developed herein.

The intepretation of interval estimate is different using

Classical and Bayes approaches. For example, lower 90% limits

have the following interpretations.

(i) Classical: There is at least a 0.90 probability that the

lower confidence limit (a random variable) will take on a

value lower than the fixed but unknown system reliability.

(ii) Bayesian: There is at least a 0.90 probability that the

unknown system reliability (a random variable) is greater

than the lower limit.

When random variables and parameters are continuous the phrase

'at least' can be omitted in i) and also in (ii) for continuously

distributed parameters.

Classical limits are referred to as confidence limits. Some-

times Bayesian limits are referred to as Bayesian confidence limits

but we shall reserve the use of the word confidence for the classical

case and simply use the term Bayesian limits. T.ese are appropriate

percentage points of the posterior distribution of reliability.

The terms credible intervals and credible limits are increasingly used

in the Bayesian context.
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Like Maximus we restrict our attention to series/parallel systems.

'or other structures such as k out of n or quorum structures the

methods advocated in DAJA37-82-C-0736 can be ubed. These methods,

based on asymptotic expansions, can also be used to provide a useful

check on the accuracy of the reduction methods herein. Exact limits

can be obtained at the expense of sometime extensive computer

simulation and such simulation was used via the computer programs

described in the appendices.

Finally we stress that the same provisos on the models and

test conditions obtain as for Maximus.

I
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2. CALCULATING BOUNDS FOR A SINGLE COMPONENT

Suppose that n components of a certain type are tested and

that s prove to be reliable. If the true reliability

(probability of success) is p then the probability of the

above outcome is

Let the uncertainty in p be described by a Beta random variable p

with probability density function

f(p) = p ( - p) /B(%o, Bd. 0 < p < 1,

where

B(cL°' s°) = J p ( - 1 - p)a°-0 dp

This distribution is called the prior distribution. Using Bayes'

theorem the posterior (after tests) distribution is

f(p) = p'-1 (1 - p)5-/B(,, ) ,

where a = ao + s and 0 = 00 + n - s.

Since the prior and posterior are both Beta, the Beta

distribution is said to be conjugate for pass/fail testing. It is

a flexible (two parameter) distribution for expressing uncertainty

about component reliability prior to testing. Notice that the

prior parameter ao is increased by the number of successes and
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0 is increased by the number of failures. Thus it can be helpful

to relate a to successes and a to failures as in Appendix A.3.

Let p a be such that Prob(p .< pa) = a,

i.e. Prob(p > p) = I - a. Then p is a lower 100(i - a)%

Bayesian limit for reliability; see Fig. 1.

Figure 1

I

Often a uniform prior (ao = 00 = 1) is used to express vague

prior knowledge, whence the posterior probability density function

becomes

f(p) pS(1 _ p)n's/B(s +1 , n - s + 1)

Percentage points may be obtained by interpolation in tables of the
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incomplete beta function such as Table 16 of Biometrika, Vol. 1.

Exact limits can be obtained using the computer program described

and listed in Appendix B.

Example 1

Let s = 11, n = 12 with = = 1. The posterior

distribution of reliability is then B(12, 2). Since the parameters

are integer Table 16 can be used without interpolation. For a = 0.1

the required entry is that for which v2 = 2 x 12 = 24 and

V, = 2 x 2 = 4. This is 0.7322, which is the lower 90% limit for

reliability.
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3. CALCULATING LOWER LIMITS FOR A SERIES SYSTEM OF NONREPEATED

INDEPENDENT COMPONENTS

Let there be k components in the series system and suppose

that the posterior distributions for reliability are independent

Beta distributions B(ai, ai); i = 1, 2, ... , k.

The components are numbered 1, 2, ..., k so that

a1 +1 a2  2 - "' >  k + ak" The reduction rules are

described for k = 2 and extend immediately for general k.

Rule (i): If al > a 2 + 82 then take as =O 2 and

al + J31
s + a s 1 x (a + ). Figure 2 depicts the scaling
s 2 2

down procedure.

Figure 2

ai +8B
Q 1 + a + x ( a 2 + 8 2 ) s +  

a sa1 + 8 x 8i a+

a.2 + 82

a 2  - a 2  = a &S

Rule (ii): If al < a2 + 82 take as + 8s = a1 + B and

a 1 1 2
= + 2 Scaling down is shown in Figure 3.



Figure 3

al + 1  a 0 +  
a1 = 0s + 0 s

a+ 21 1

a I a
1.0.

a. -' = al
CL2 

2
+  

a

When a, = 2 + 2 then a s +s = a1 + 8 and as a 2

In this case the reduction is exact (see A.3).

Example 2

Let k = 3; a1 
= 28, 81 = 2; a2 = 21; 82 = 20, a3 = 20, a3 = 2.

Since a 1 > a 2 + 82 take a + = (a1 + 81 )(a2 + 82 )/a = (30 x 24)/28

= 25.7143 and a = a2 = 21. Rewrite a as a2  and 8 as 82.

Finally, since a2 (=21) < a3 + 83 (=22), the system

as = (21 x 20)/22 = 19.0909 and 8s  = 6.6234.

The lower 90% limit for system reliability obtained by simulating

10,000 values from the exact posterior distribution is 0.627. The

limit given by the above approximating beta distribution is 0.629.

Exponential Times to Failure

Suppose that a given component has exponential failure rate X.

Then, given X, the time to failure x has probability density

functi on
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fW) = e- x  x > O, X > 0.

Let the uncertainty in x be described by a gamma distribution

with probability density function

11o-1 -To

g(X) = To(ToX) e /r(n) 

TO > 0, no > 0. The likelihood function when n components have

failed in a total time on test t is

n -Xtk= Ane-k

The posterior distribution of the failure rate is then

g() = T(TX)n-Le-TX/r(n) ,

when n = no + n and T = T + t. Again we have a flexible prior

distribution which is conjugate for exponential testing. Now, without

loss of generality, we may take the unit of time to be the mission

time whence the reliability of the component is

-xp=e

It follows that the distribution of p has probability density function

f(p) = Tn(-xnp)n-lpT'1/r(n) .

This is precisely the distribution of the product of n independent

B(,r, 1) variates. Thus such a component in a structure is

equivalent to n independent series components each with a B(r, 1)

distribution. If n is an integer than the reduction methods

given previously for Beta variates give a single approximating Beta
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distribution with a =Tn/(T + 1 )" - ' and ( = (T + I - TrnI(T +

Even if n is noninteger the above approximation is still very good.

Note that in Maximus noninteger sample sizes and successes are common

under reduction.

Example 3

Let n = 3, T = 40. Then a = 403/412 = 38.07 and

= {41 - 403}/412 = 2.93. The exact lower 90% limit for

reliability is exp {-x(.1)} , where x(.1) is the 10% point

of the distribution of X. Since it is well known that 2XT

has a chi-squared distribution with 2 n degrees of freedom we have

= X2(.I)/ 2 x 40 = 0.1331 giving e- x ( ' ) = 0.875. Using

the incomplete beta function with a = 38.07 and o = 2.93 we get

the corresponding approximate lower 90% limit of 0.864.

$
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4. CALCULATING LOWER LIMITS FOR A PARALLEL SYSTEM OF NONREPEATED

INDEPENDENT COMPONENTS

Let there be k components in the parallel system and suppose

that the posterior distributions of component reliabilities are, as

before, independent B(ai, si) distributions; i = 1, 2, ..., k.

The reliability of the parallel system for given component

reliabilities P1, P21 .... Pk is

Ps = I - Ik( - pi)

= - k qis where qi -pi
i=1

Thus qs = 1 - Ps 1k qi
i=1

If Pi " B(.i, si) then qi - B(i, ad and the results for series

systems can be used here by interchange of parameters and of

reliabilities by failure probabilities. Also one needs to scale

up rather than scale down, as is the case for series sytems. The

following example illustrates the procedure.

Example 4 k = 3; a, = 6, B =2; a2 =6, s, =2;

= 9, 03 = 1.

Component: 1 2 3

+ 0 8 8 10

(,,) (6) (6) (9)

8 2 2 1

8 1 1
r 8 -32 10

(30) (9)

2 1
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The rule for scaling up when sample sizes are unequal is 'scale so that

as + s is a minimum'. Thus we have

32 10

(30) (9)

2 1

as +8s = 16 x 10 =160

as = (159)

s = 1

5000 simulated values of system reliability gave a lower 95%

limit of 0.975. The lower 95% limit given by the approximating

B(159, 1) variate is 0.980.

Vi

fJ
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5. CALCULATING LOWER LIMITS FOR SERIES AND PARALLEL SYSTEMS OF

INDEPENDENT REPEATED COMPONENTS

5(a) Series Systems

Suppose that the posterior distribution for the reliability of a

component is B(a, 0) and that k such components are connected serially.

k
The reliability of the series system is p , where p is the

individual component reliability. A good approximating beta distribution

has parameters as, s given by

= - }(a+B) (a+0+1). (c,+a+k-1

BS= B.

The derivation of these expressions for as, Bs  is given in A.4.

Of course it is easy to obtain exact lower limits for pk since

they are simply the corresponding limits for p raised to the power k.

However, when such a structure is embedded in a more complex arrangement,

with components of different types, we do require a reduction to a

single beta distribution. The following examples show that the above

reduction works very well. It is based on the adapted sequential

procedure plus the method of moments - see A.4.

Example 5

k = 2; -a 30, 8 = 2.

s 2 1 30- 31 14.762

6 =2.
S

I
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Thus B(14.762, 2) is the reduced beta variate for p2. The exact

lower 90% limit for p2  from Table 16 of Biometrika, Vol. I is

(0.88023)- = 0.7748. The approximate limit given by the above

reduced beta variate is 0.7747, in excellent agreement with the exact

result. Maximus advocates equal splitting for repeated components

in series. The Lindstrom and Madden method is then applied as if the

components were of different types. The reduced beta variate is then

8(14.06, 1.94), using the analagous procedures of Chapter 3. The

approximate lower 90% limit for p2  is 0.770, which is not as good as

the adapted sequential approach.

Example 6

K = 4; = 30, 8=2

OlS 2 1 30 x 31 x 32 x 33 7.154,

=2 32 x 33 x 34x35J - 7.154,

=2.

The exact lower 90% limit is (0.88023) = 0.6003 and the approximate limit

is 0.5999, again in excellent agreement. Equal splitting of parameters

gives 0.5770.

5(b) Parallel Systems

The formula for repeated components in parallel is given in A.4(il).

We have

as a5zaI..+i + k 1)

Bs
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Example 7

k= 4; ct=8, 2

as=8

10 x 1 x 127x 131

Exact: The lower 95% limit for system reliability is I - the upper 95%

limit for failure probability. For q this limit is 0.4295

and therefore exact lower 95% limit for reliability is

1 - 0.0326 = 0.967.

Approximate: Using the approximating B(8, .0563) variate the lower

95% limit is 0.960.
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6. TWO COMPLEX STRUCTURES

Structure 1

/I -L

F,

(1', 1"), (1', 1"), (3', 3") signify replicates of components

1, 2 and 3 respectively.

Beta Parameters

Component a

1 29 1

2 10 1

3 9 1

4 8 2

5 8 2

6 8 2

Using the reduction methods described previously

M1 = (1' * 1") - B(14.5, 1); (2'//2") - B(5, 1); (3'//3") B(9, 0.167)

M2 B(45.83, 0.167), M3 --> B(248, 2).

M1 * M2 * M3- B(14.5, 1.182).

" I - j al' i lI•ai i
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Approximate lower 95% limit = 0.792

Exact lower 95% limit = 0.809.

(Based on 5000 simulated system values).

Structure 2

--1 ' --- "

4

(2', 2") are replicates of component 2.

Beta Parameters Gamma Parameters

Component an t

1 2 40

2 9 1

3 8 2

4 3 25

Converting the Gamma distributions to Series Beta distributions using the

results of Chapter 3 we get for component I a 8(38.025, 1.985) variate

and component 4 reduces to a B(22.114, 2.886) variate. The final

system approximating Beta distribution has parameters 38.025 and

2.151. This yields an approximate lower 95% limit of 0.8806.



-19-

5000 simulated values of system reliability using the computer

program gave a corresponding lower limit of 0.8859.
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APPENDIX A

An Alternative to Lindstrom and Madden

The Lindstrom and Madden method is recommended for series systems by

Maximus. We first describe an exact sequential procedure for series

systems and then show how it can be adapted to leal with arbitrary but

fixed test sample sizes. The proof of an int resting property of the

adapted procedure is then given. Some comparisons with results given

by Lindstrom and Madden and also some other approximate procedures are

presented. Finally it is shown how the modified sequential procedure

can be converted to the analagous Bayesian procedure given in Ch. 3.

A.1 An Exact Sequential Procedure

Let there be k independent components in series. The component

types may be arbitrarily labelled 1, 2, ..., k. Suppose n1

components of type 1 are tested and that s1  prove to be reliable.

Take the sample size for component 2 to be n2 = s1 and suppose that s2

are reliable. Continuing in this way the sample size for the kth

component is nk = Sk-i and let sk of these be reliable. Then in

random sampling sk is Binomially distributed with n1  trials and

parameter p = R i=1pi. Write

;k - Bin(n1, p).

Proof that sk ~ Bin(n 1 , p)

Let k =2. Given n2 = si the probability generating function

for s2  is

sIG2(z~n2 =s)=(q2 + P2z) , q2 = 1 - p2
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The unconditional probability generating function is

G2 (z) = I ~ ~ (q 1pznl= s I]s ls
= n)= (q2  + Pzz) p!Pil (I - p1 )

s1=0 s1

S [(q 2 + PaZ)P 1J' (1 - p1)

= (q2 + Pz)P1 + (I -
P1)]

n1
= I(1 - PI P2 ) + PIP 2z]

= (q + P) j p = Pa'~p q = 1 - p

The result for k components in series follows by induction.

A.2 A Forced Sequential Procedure

Now let n1, n2, ... , nk be arbitrary but fixed sample sizes and let

sI, s2 , ... I s k be the corresponding numbers of reliable components

obtained in tests. Without loss of generality label the components so

that n.> . n2 : ... > nk . For simplicity let k = 2 initially. Two

cases need to be considered,

(i) s, >n2  and (ii) s, < n

The rule to 'force' the sequential procedure for case (i) is - sample at

random and without replacement from the test results for component 1 and

stop when n2 successes have been obtained. The average sample size
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to achieve n. successes is n, x (n. + 1)/(sl + 1). This is taken to be

the system sample size and the number of reliable systems is taken to be s2.

For case (ii) choose a random sample of size s1  without replacement from the

test results for component 2. The average or expected number of reliable

items is si x S2/n 2  and this is taken to be the number of reliable systems

in a sample of size n1 . In both cases we assume that the results are

binomial test results and lower confidence limits for system reliability can

be obtained from binomial reliability tables, interpolating as necessary

for noninteger sample sizes and succcesses (number reliable). For the

above procedure both the sample size N and the number reliable in the

sample S are random variables connected by the interesting result

E(S) : p E(N),

where p = p1p2. The procedure extends easily to general k.

Proof that E(S) = p E(N)

E(N) = n2  t s ' J p(S =s ) + n, p(S, < s,)

n i fn1+1 'jnjP si n1-S+ n2 - 1n (,s i n-s i

= n 2  - j (1 -) nns PJ p 1 1-p2
1s+T 1, -p') + n, S

n2 -1
E(S) = n2 P2 P(S 1 > n2 ) + P2  s1 P(S1 

= s )
sl=O

=i 0

(2P2 I  S 1 -p) + Ps 2

sn-n2 sI=O 1
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Using the combinatorial identity (x = xi 3 We a rt

n,[ ,,l n', I( _, 1 n1, s [ n -s1  ( , n,- n pn2  ( nl-n2 +1
I 2 +1

P n 21 2

-1  n'j p , (1 - p, ) n s l
sI =0 I1J

A second application of the combinatorial identity to the last term on the

right hand side of E(N) gives

E()=n2  n1 fnl snl-s 1 n 1 njpn 2-1( pln 1 -n2 +1

X 'I p 1 s 
2 ( 1 - 9- n ( 1 p

1=n tsi ~n 2j

+ n {:i:2- [ 21]J PS-i (1 - p,)n9 + n- Pn 2-1 0(I n- n 2+}

n2  n 1 , nj n-S.I n -1s4:1Ps n- s

PS pi) p+ 1

= E(S)/(PIP2 )

E(S) = p E(N)
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A Comparative Example

k = 3; n1 = 30, s, = 28; n2 = 24, s2 = 22; n3 = 20, s, = 19.

Reducing components 1 and 2 using case (i) gives n = 25.714,

s = 22. Combining these values with those for component 3, again

using (i), gives the final values n = 23.377, s = 19. Linear

interpolation in the tables of Cook, Lee and Vanderbeck (1964) gives a

lower 90% confidence limit of 0.670 for system reliability.

The Lindstrom and Madden method gives n = 20 and s = 16.256

yielding a lower 90% confidence limit of 0.654.

There is no unique exact lower limit but other methods suggest

that exact procedures would give values between 0.68 and 0.69 - see

Example I of Winterbottom (1984).

Note that case (ii) is the Lindstrom and Madden procedure.

Overall the sequential approach is less conservative than Lindstrom and

Madden and merits further study.

A.3 An Analagous Bayesian Sequential Procedure

Consider k independent beta variates B(ai, Bi), i = 1, 2, ..., k.

Suppose that a + B > C2 >... > ak + 8 k and that a = a + $ 2 ,

.... ak-1 = ok + Ok.  Then the distribution of the product of these
k

variables is exactly Beta B(ak i i).

Now (see Chapter 2), equating a with s, a + a with n

and regarding reliability as a random variable with a, 8 fixed, the
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result

E(S) = p E(N) a--> E(P)(a + a). This suggests the 'forced'

sequential procedure of Chapter 3 when the ai, ai are arbitrary.

A.4 Repeated Components in Series or Parallel

(i) Series Systems

Let k = 2 so that we require an approximating distribution for p2.

Suppose that the distribution of p is B(a, 8).

Split a, 8 according to the following sequential scheme

x

y= y

z

where x + y = a + 0 and y + z = a. Subtraction gives x - z = 8.

Knowledge of y is not required since we take as + as = x and a. = Z.

Thus far x and z are not uniquely determined. By the method of

moments equate z/x, the mean of the approximating beta distribution, to

the mean of p2 , i.e.

Z/x a(a+l)

Using x - z -, x = as + as * z = as  and solving gives

als all 
I~ 

____

and as = a.
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The corresponding expressions for general k are

as = a(+'1 ) ... (a+k-1)

S= B i- (a+B)(B+1)...(a+B+K-i)}

and as = B.

(ii) Parallel Systems

Since failure probability q = I - p all that is necessary to obtain

corresponding results for parallel systems is to interchange a, B in the

above results for series systems.

Thus

ad s  
1

(c,+O) (o,+B+ ) ... (cL+a+k-1)
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APPENDIX B

B.i Directed graphs

It is possible to represent a control system by a directed graph
where the nodes are the components in the system and where the directed
lines represent the flow of control signals.

To cater for branching at the start of a graph it is convenient to
introduce an extra node, called the source, before the first node.
Thus a source node has no inputs. Similarly, to deal with multiple
returns at the end of the graph, an extra node with no outputs, called
the sink, is added there. The graph then has a unique entry and a
unique 'exit and the reliability of the whole graph is simply the
reliability of the connection between the source and the sink.

In order to describe the graph the nodes are numbered sequentially,
starting with zero for the source and reserving the highest number for
the sink. It is then possible to store the connection information by
forming, for each node, the set of nodes which directly receive its
outputs. A convenient representation for this is as a linked list of
records called KIN where each record has integer fields FATHER, SIZE and
a field SONS, consisting of an integer set, such that the node FATHER
has SIZE outputs to nodes called sons, the numerical values of which are
held as elements of the set SONS.

If there Is a linkage through a succession of nodes from A to B
then the corresponding set of node numbers is called a path. Clearly
there may be more than one path between two nodes and any node may be a
member of several paths. Two paths are said to be independent if their
intersection is the null set otherwise they are dependent. Thus
dependent paths have nodes in common and independent paths do not. A
path which contains both the source and the sink is called a complete
path, otherwise it is called an incomplete path. The type of control
system which is considered in this report consists only of complete
paths.

From the information in the list KIN, all distinct and complete
paths may be found. These paths may be manipulated to give the
algebraic expression for the overall reliability of the graph and
finally this expression may be evaluated numerically.

This process is most suitable for embodiment in a computer program
which interrogates the user for the son nodes of each father node,
requesting also reliability information for each node and which then
proceeds to perform the appropriate manipulations on these data.
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B.2 Control system reliability

The algebra for dealing with the reliability of combinations of

components in a control system is based upon the two results :-

(a) if nodes A and B are directly connected in series then the

reliability of the combination is r ra where rA and r, are the
reliabilities of A and B,.

(b) if nodes A and B are connected in parallel then the reliability

of the combination is I - ( 1 - r. ) ( I - r.).

These results are readily extended to more complex cases of
series/parallel connections.

If all control systems were composed of series/parallel
combinations of components then the rules (a) and (b) would be
sufficient to determine the overall reliability of the system. Now the
graph in fig.1 is an example of a control system where it is not
possible to discover a pair of nodes which are either in series or in

parallel. It follows that some other technique is required to assess
the overall reliability of a system in which the nodes are connected in
an arbitrary fashion.

The new technique for the analysis of general control systems
starts with the determination of all distinct paths from the source.
This is achieved by using a linked list of records called ROUTE, each
record contains a field PATH consisting of the set of nodes in a path
and a field LASTIN which holds the last node that had been added to
PATH. Initially ROUTE consists of a single record with PATH = [01 to
represent the source node and with LASTIN = 0.

The information In KIN is then accessed to extend the list in ROUTE
as follows :-

For each record in ROUTE, consider LASTIN to be a father node
having the sons s,..s.,,., then generate and add to ROUTE a total of
(SIZE - 1) replicate records to give SIZE copies. If these copies have

PATH fields denoted by p, .. p... and LASTIN fields L,. L.,,., then for
k - i to SIZE add s. to pi and set L. = sk. If a son to be added is
the sink, then the assembly of that particular record is terminated.
This process is repeated until each record in ROUTE has been assembled.

All paths in the systems under consideration are complete and it
follows that any such system will exhibit overall failure only if every
path fails. This means that the paths must be considered, in some
sense, to be connected in parallel between the source and the sink.

However, this concept needs to be modified by taking account of the

dependences between paths.

To describe the algebra required for path manipulation let P be a
complete path and let (P) denote the associated reliability expression
obtained as the product of the reliabilities of the nodes in P. Then

for a control system without branches, there is only one path and (P)
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is the system reliability. Also if P and Q are any two independent

paths where the nodes in P are connected in series with the nodes of Q
then the reliability of the combination is the reliability of the union
set for P and Q, thus {p(){Q) = (P U Q). It is convenient also to
use the notation I P - Q I for the set of elements which are members of
P but not members of Q.

Suppose now that S, and S2 are two complete paths and it is
required to derive their combined reliability expression. Using T to
denote the intersection set of S, with S 2 , it follows that the nodes in
T are linked in series with the parallel combination of the nodes in the
sets C S, - T I and ( S2 - T 1. The reliability of this parallel
combination is then

{[ S, - T ]) + (I S 2 - T 3) - (C S, - T I U I S2 - T 3)

The connection now, in series, of the nodes in T gives

iT)v*( St - T 1 + fT}*([ S2 - T 1 - (TI*[ S, - I 3 U I S 2  T ])

which is equivalent to

(T U I S, - T ]) + (T U E S2 - T J) - (T U (I St - T I U I S2 - T ]))

and this simplifies to

(S,) + {S2 I - (St U S2 .

Now the expression I - ( I - S1 )*( 1 - S2 ) can be taken to
yield S' + S2 - St*S2 , so that if the operator * is replaced with the
union operator and the operators +, - understood to act only on the
equivalent reliability expressions then the required reliability
expression is obtained.

The reliability for a further complete path S in conjunction with

S, and S2 Is then given by associating S3 with the three components
above giving successively

(S, ) + {S3 ) - (SI U S, I

(S2 J + (S3 ) - (S2 U S3 I

and - (SIU S2 ( (S2) + (St U S2 U S3 .

The sum of these reliabilities can be derived from the expression
I - (1 - St)*(I - S2 )*(I - Ss) if, as before, the operator * is replaced
by the union operator.

It follows that, with these interpretations, rule (b) can be
applied to complete paths to give their combined reliability expression.
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The procedure to be adopted for a general control system then
becomes

(i) find all distinct complete paths

(it) if there are N such paths denoted by S,, .3, .. , S. then
form the expression

I - T7 ( I - S.

k = i,N

(III) evaluate the products In this expression using the given
interpretations for the operators ,

(iv) finally, translate the resulting expression in sets into the
corresponding reliability expression.

For the system of fig.1 the construction of ROUTE is as follows

[0] initial path, now add the son of node 0,
[O 1] add the three sons of node 1,
(0 1 2] [0 1 3] tO 1 4] add the son of node 2,
CO 1 2 5] (0 1 3] EO 1 4] add the sons of node 3,
t0 1 2 5] [O 1 3 5] [O 1 3 6] tO 1 4] add the son of node 4,
[0 1 2 5] [O 1 3 S] (0 1 3 61 (0 1 4 61 add the son of node 5,
0 1 2 5 7] [O 1 3 5 7] CO 1 3 63 [0 i 4 6] add the son of node 6,
t0 1 2 5 7] [0 1 3 5 7] CO 1 3 6 7] t0 1 4 8 7] add the son of node 7

to give the four complete paths represented by the sets

S. = CO 1 2 5 7 8], S= t0 1 3 5 7 8],
S. = [O 1 3 6 7 8] and S. = [O 1 4 6 7 8].

The reliability expression for the system is now found by evaluating

(1 - S,)( 1 - S2) = S, U S. - S, - S. + I

= CO 1 2 3 5 7 83 - [0 1 2 5 7 8] - (0 1 3 5 7 8] + 1,

then I 1 - St)( I - S 2 )( I - S,) =

I - Co 1 2 S 7 8] - 0 1 3 5 7 8] -to 1 3 6 7 8] + CO 1 2 3 5 7 8]
+ CO 1 3 5 6 7 8] .

and finally, I - ( 1 - S,)( I - S2 )( 1 - S3 )( I - S.) =

0 1 2 5 7 8] + CO 1 3 5 7 8] + t0 1 3 6 7 8] + O I 4 6 7 8]
- CO 1 2 3 5 7 8] - EO 1 3 4 6 7 8] - C0 1 3 5 6 7 8]

- CO 1 2 4 5 6 7 8] + C0 1 2 3 4 5 6 7 81.
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The corresponding reliability expression, assuming that the source
and sink rellabilities are both unity, is then found to be

r, (r 2 rZ + r
3 r3 + r 3 r, + r

4 r& - r 2 r 3 r 5 - r 3 r 4 r,

-" rs r, - r 2 r
4 r 5 r, + r2 r 3 r

4 rs r ) r 7

B.3 Numerical assessment of reliability

When the nodes in a control system or a program have given
numerical values for their rellabilities then it is a simple matter to
evaluate the overall reliability by direct substitution in the
reliability expression.

However, if each node has an assumed reliability distribution then
it should in principle be possible to find the overall reliability
distribution as an analytic expression. The problem becomes one of
finding the theoretical distribution for a weighted sum of products of
varlates with known distributions.

A simpler and more practical alternative to this theoretical
approach uses a Monte Carlo method. Here the reliability expression is
evaluated many times using, for each evaluation, component reliabilities
drawn at random from their given distributions. These overall
reliability values are accumulated in the form of a histogram which is
then taken to be an approximation to the required distribution.

The following tabulations give the results of the Monte Carlo
assessment for the reliability of Structures 1 and 2, using 5000
simulated system values.

Reliability histogram for Structure I

reliability frequency

range
0.00 Lo 0.05 0
0.05 to 0.10 0
0.10 to 0.15 0
0.15 to 0.20 0
0.20 to 0.25 0

0.25 to 0.30 0
0.30 to 0.35 0
0.35 to 0.40 0
0.40 to 0.45 0
0.45 to 0.50 0
0.50 to 0.55 0
0.55 to 0.60 0
0.60 to 0.65 1
0.65 to 0.70 0
0.70 to 0.75 9
0.75 to 0.80 62
0.80 to 0.85 260
0.85 to 0.90 903

0.90 to 0.95 2070

0.95 to 1.00 1695
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Mean reliability = 0.9253

Variance estimate 0.001949

Reliability histogram for Structure 2 :-

reliability frequency

range

0.00 to 0.05 0

0.05 to 0.10 0

0.10 to 0.15 0
0.15 to 0.20 0

0.20 to 0.25 0

0.25 to 0.30 0
0.30 to 0.35 0

0.35 to 0.40 0
0.40 to 0.45 0
0.45 to 0.50 0

0.50 to 0.55 0
0.55 to 0.60 0
0.60 to 0.65 0

0.65 to 0.70 1

0.70 to 0.75 0

0.75 to 0.80 3

0.80 to 0.85 66

0.85 to 0.90 398

0.90 to 0.95 1739

0.95 to 1.00 2793

Mean reliability 0.9474

Variance estimate = 0.001117

8.4 Program listing

The following is the Pascal program for the Monte Carlo assessment

of control system reliability.

program controlsystems (input, output);

C This program reads data which represents a network of components

with a start component numbered zero, a finish component numbered N

intermediate components numbered i..N-, 
and one way links between the

components forming various routes from component zero to component N.

A list of all possible routes is built up and then an expression is

formed which represents the reliability of the whole network in terms of

the reliabilities of the individual components.

The program requests values for the Beta or Gamma parameters of

each node and then uses a Monte Carlo technique to evaluate the

reliability of the network count ( = 5000 ) times using a pseudo-random

generator to assign reliability values to the nodes, with each

reliability being derived from the appropriate Beta or Gamma

. . ..
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distribution. A histogram is assembled for the overall reliability
distribution. }

const

max = 50; ( maximum component number
count = 5000; ( number of values for the overall

reliability histogram I

type
range = O..max;
collection = set of range;

ptr = ^node;

node = record
path : collection;
coeff, lastin : integer;

next : ptr
end;

point = ^family;
family = record

father, size : range;

sons collection;

kin point

end;

params = array [range,i..2] of real;

var

route, q t ptr;
result, mean, yarn : real;
reliability : array [range] of real;
source, sink :range;
links : point;
betapars : params;
x, y, z, i, k, nofO :integer;
nodelist : array (range] of -1..1;

a node list element = -1 if the node has not yet been mentioned

= 0 if the node has been given as an input
= 1 if the node outputs have been supplied )

histo : array [O..19] of integer; { Array to hold the results of )

( a Monte Carlo simulation for )
( reliability as a histogram. )

a : array Ci..32] of real; ( The arrays a, t, h, d are required )
t,h : array 11..312 of real; ( for the generation of variates from )
d array C6..47] of real; ( the normal or Gamma distributions. )
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function random:real;

( This random number generator is based upon N.P.L. Report DITC 6/82 by

B.A.Wichmann and l.D.Hill. The global variables x, y, z are to be

given initial random integer values which should be less than 30000.

var

w, ran : real;

begin

repeat
x := 17i*(x mod 177) - 2*(x div 177);

if x<O then x := x + 30269;
y := 172*(y mod 176) - 3S*(y div 176);

if y<O then y := y + 30307;
z := 170(z mod 178) - 63*(z div 178);

if z<O then z := z + 30323;
w := x/30269 + y/30307 + z/30323;
ran := w - trunc(w)

until ran <> 0;

random := ran

end;

f The following procedures FL GM GS GT GO are from Computing vol.12,

pages 223 to 246 (1974) by J.H.Ahrens and U.Dieter. They are
efficient routines for computing random varlates from a normal
distribution (FL) and from a gamma distribution (GM GS GT GO). The

function betagamma returns a random reliability either as a Beta variate

or as exp( - Gamma vartate). )

procedure fl(var x : real);

label
1, 4, 6, 13, 14, 17;

var
u, us, tt, w, y, aa : real;

s, i : integer;

begin

1: u random;
s : trunc(2*u);
u trunc(32*(2*u - s));

i : trunc(u);

if i <> 0 then
begin

us : u -
aa : ali];

4: if us > tEil then

begin
w := (us - t~il)*hi];
goto 17

end;
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u :srandom;
w :=u*(a~i+iJ aa);
tt :(w/2 + aa)*w;

6: if us > tt then goto 17;
u := random;
if us < u then
begin

us :=random;
goto 4

end;
tt :~U;
us :random;

goto 6
end
else
begin

1 6;
aa :aC32];

u :2*u;

while u < 1.0 do
begin

aa aa + d(iJ;
i : j + 1;
if i > 47 then goto 1;
u := 2*u

end;
u :u -1

13: w u*dtil;
tt (w/2 + aa)*w;

14: us :random;

if us > tt then goto 17;
u := random;
if us < u then
begin

u := random;
goto 13

end;
tt :=U
goto 14

end;
17: y := aa + w

if s 0 then x :=y else x -y
end;
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procedure gm(n integer; var x real);

var
p real;
I integer;

begin
p :: 1;
for I := I to n do
p perandom;

x - ln(p)
end;

procedure gs(a real; var x real);

label 1;

var

p, b, u, xx real;

begin
b (2.718281828459 + a)/2.718281828459;

1: u random;
p bsu;
If p > 1 then
begin

xx - ln((b - p)/a);
if random > exp((a - 1)*ln(xx)) then goto 1 else x xx

end
else
begin

xx := exp(ln(p)/a);
if random > exp(-xx) then goto 1 else x xx

end

end;

procedure gt(a : real; var x : real);

var
m : integer;

f, z, y :real;

begin
m trunc(a);

f a - m;
if m = 0 then y : 0 else gm(m,y);
if f = 0 then z : 0 else gs(f,z);

x :y + z
end;
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procedure go(a : real; var x real);

label
2, 7, 6, 8, 10;

var
mu, v, sig, sig2, w, d, b, u, s, ss, xx :real;

begin
mu :=a - 1;
v := sqrt(a);

sig2 : a + 1.632993161855*v;

sig sqrt(sig2);
w sig2/mu;
d := 2.44948974278318*sig;

b mu + d;
2: u random;

if u <= 0.009572265238289 then goto 8;

ft(s);
xx := mu + sig*s;

if (xx < 0) or (xx > b) then goto 2;

u := random;
ss :=sqr(s)/2;
if s >= 0 then goto 6;
if u <= I - ss*((l - 2*s/v)*w -I) then goto 10 else goto 7;

6: if u <= I - ss*(w-I) then goto 10;

7: if In(u) > mu*(I + ln(xx/mu)) - xx + ss then goto 2 else goto 10;

8: s - n( - random);
xx : b*(I + s/d);
u : random;
if In(u) > mu*(2 + ln(xx/mu) - xx/b)+3.7203284924588 - b -In(sig*d/b)

then goto 2;
10: x xx

end;

-
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function betagamma(a. b real):real:

( Procedure to compute a reliability from the random number generator.
A beta variate is returned for the reliability if a, b are positive with
the variate proportional to the cumulative distribution of x**(a-1) *

(1 - x)**(b-1). If a, b have been entered as negative values then this
indicates that the required reliability is to be derived from a Gamma
distribution and the value returned is exp(-y/lbl), where y is a Gamma
varlate from the cumulative distribution of x**(Ial -1 * exp(-x).
The value y/lbi is the corresponding varlate from the cumulative
distribution for the expression x**(fa( - I) * exp(-Ibl*x).

var

x, y, C :real;

begin
c := abs(a);
if c <= 3 then gt(c,x) else go(c,x):
if a < 0 then betagamma := exp( -x/abs(b))

else
begin

if b <= 3 then gt(b.y) else go(b.y);
betagamma := x/(x*y)

end
end:

procedure split (var route. hd : ptr; n : range);

( Split route into two lists, one called hd containing those records
for which n is a member of their path field, the other list called

route contains all the other records.

var
p : ptr;

begin
if route <> nil then

if n in route^.path then
begin

p := route;
route := p^.next;
p^.next := hd;

hd := p;
split (route. hd, n)

end
else split (route^.next, hd, n)

end;

. . . - - I



- 39; -

procedure display (s collection);

var
i : range;

begin
for i := 0 to max do

if i in s then write (i : , ' ');

writeln

end;

procedure show (route : ptr);

begin
while route <> nil do
with route- do
begin
write (coeff : 5, ' : )
write (lastin : 5, ' );

display (path);

route := next
end

end;

procedure create (var route : ptr);

( Read in all the data for the network and create the corresponding
linked list called route.

var
I, J, m, n : range;

p, r : ptr;
kith : point;

s : collection;
done, test : boolean;

begin

C first find all connections in kith giving the father node, the set

of sons of the father and the number size of these sons I

repeat

n := 0;
while nodelist~n] <> 0 do n := n + 1;

nodelisttn] i;
nofO := nofO - 1;
writeln ('Number of connections from node ', n i, * ? ');
readin (i);

new(kith);
kith^.father := n;
kith^.sIze i;

kith^.sons : C];

II
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if I = 0 then sink n;

if (n <> source) and (n <> sink) then

begin
writeln('Reliability parameters of node ',n :,' ? ');

writeln('Enter the negative values for Gamma distribution');
readIn(betapars n,1i,betaparsEn,2])

end;
if I > 0 then

begin
for j := 1 to I do

begin
writeln ('Connection ', j 1, ' from node ', ? 1, ' ? ');
readln (m);
kith^.sons := kith-.sons + [m];

if nodelistEm] = -1 then

begin

nodelist[m] 0;
nofO := nofO + I

end
end

end;
kith^.kin := links;

links := kith

until nofO = 0;

( now use the connections in links to find all pathways through the
graph from source to sink I

new(route);
with route- do
begin
path =0];

coeff 1;

lastin 0;
next := nil

end,
repeat

p :f route;
done := true;
repeat

it p <> nil then
if (sink in p^.path) or (p^.lastin < 0) then p = p^.next;
test := p = nil;
If not test then
test := not ( sink in p-.path) and ( p^.lastin >= 0)

until test;
if p <> nil then
if not ( sink in p^.path) and (p^.lastin >= 0) then

begin
kith links;

while kith^.father <> p^.lastin do kith t= kith^.kin;

a :f kith^.sons;
for J : i to kith^.size do
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if j < ktth^. size then
begin

m : 0;
while not ( mn in s ) do m m 1;

s :=s - Cml;
new (r);

r'.path :=r-.path + Em];
if not ( mn in p-. path) then
begin

r-. lastin := ;
done :=false

end
else r^.lastin : m

r^. next :=route;
route :=r

end
else
begin

m :=0;
while not ( mn in s ) do m in + I

If not (m In p-. path )then
begin
done false;

p-.path :=p-.path + Cm);
p^. lastin :=m

end
else p^. lastin m

end
end

until (p =nil )and done
end;
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procedure comb (hd ptr; var route : ptr);

( Convert the linked list of paths into the linked list of reliability

terms. I

var

p, q, r : ptr;
s : collection;

done : boolean;

begin

p %= hd;
q := route;

while q <> nil do
with q- do

begin
new (p^.next);
p := p^.next;

p^.path path + hd^.path;
p^.coeff - coeff * hd^.coeff;
p^. lastin sink;
q := next

end;
p-.next := nil;
while hd <> nil do

begin

s 1= hd-.path;
q route;

done := false;
repeat

if q^.path s then
begin

q^.coeff q-.coeff + hd-.coeff;
if q^.coeff = 0 then
begin

if q = route then route q-.next
else r^.next q^.next;
dispose (q)

end;

done := true
end
else
begin

r :q;
q q^.next

end
until done or (q nil);

If done then
begin

r:=hd;

hd := hd^.next;
dispose (r)

end

else
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begin
r-. next hd;
hd :=hd-. next;
r^.next'-.next :=nil

end
end

end;

procedure combine (route ptr);

var
p, hd :ptr;

begin
hd :=route-. next;
route-.next :=nil;
while hd <> nil do
begin

p :=hd.next;
comb (hd, route);
hd p

end
end;
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procedure evaluate (route ptr; var result real);

Compute the numerical expression for the overall reliability.

var
p :ptr;
x :real;
s :collection;
i: integer;

begin
result :=0.0;
p :=route;
while p <> nil do
begin

s p^. path;
x p^.coeff;
1 0;
while s <> (I do
begin

if i in s then
begin

x x ftreliabilityUJ];
S s -Ci]

end;
I i= + 1

end;
result result + x
p :=p^.next

end
end;

begin
nodellst[O] :=0;
for I I to max do nodelisttl -1;
nofO 1;
all] 0;

*a[23 0.03917608550309; a131 :m 0.07841241273311;
*a[41 0.11776987457909; a151 0.15731068461017;
a[61 0.19709908429430; aE1 0.23720210932878;
&E83 0.27769043982157; a193 0.31863938396437;

a1103= 0.36012989178957; alil 0.40225006532172;
a1123 :.4O62951 113] : 0.48877641111466;

&E13= 0.62809901234841; aEi?7 : 0.67448975019607;
a1i83 0.72451438349236; aC193 0.77642176114792;
&E201 0.83051087820539; a1213 0.88714655901887;I &1223 0.9467817S630104; aE23] 2 1.00999016924958;
aE243 1.07751556704027; a12S] 2= .15034938037600;
&E261 1.22985875921658; aE27] : 1.31801089730353;
aE28] :m 1.41779713799625; :129] L= .S341205443S253;
aE3 03 z1.67593972277344; a1313 : 1.86273186742164;
&E321 2.15387489408144;
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for i 1 to 31 do
begin
t~i] ((ali+13 - a(li)/2 + ali])*(afi+1] - ali]);

hil = (a[i+il - a~i])/(1 - tCl])
end;

d[6] 0.26368432217502; d[7] 0.24250845238097;
d[8] 0.22556744380930; d[9] 0.21163416577204;
d[1O] 0.19992426749317; dI]= 0.18991075842246;
d112] 0.18122518100691; d[13] 0.17360140038056;
d[14] 0.16684190866667; dS] = 0.16079672918053;
d116] 0.15534971747692; d171 0.15040938382813;
d1181 =0.14590257684509; d[19] 0.14177003276856;
d120] 0.13796317369537; d[21] 0.13444176150074;
d122]= 0.13117215026483; d123] 0.12812596512583;
d[24] 0.12527909006226; 6125] 0.12261088288608;
d126= 0.12010355965651; d[27] 0.11774170701949;
d128] 0.11551189226063; d129] 0.11340234879117;
d[30] 0.11140272044119; d[3t] 0.10950385201710;
d132] 0.10769761656476; d[33] 0.10597677198479;
d134] 0.10433484129317; d[35] 0.10276601206127;
d[36] 0.10126505151402; d137] 0.09982723448906;
d138] 0.09844828202068; d[393 0.09712430874765;
d140 = 0.09585177768776; d[41] 0.09462746119186;
d[42] 0.09344840710526; d[43] 0.09231190933664;
d144 = 0.09121548217294; dE45] 0.09015683778986;
dC46] 0.08913386650005; d(47] 0.08814461935364;
x 31415;
y 27188;
writeln('lInput random seed, an integer between 0 and 30000');
readln(z);
source := 0;
sink max;
links nil;
create (route);
q := route;
combine(route);
show(route); writeln; wri-te-n--
reliability(O] := 1.0;
reliability(sink] := 1.0;
for 1 := 0 to 19 do histoi] = 0;
mean := 0.0;
varn 0.0;
for I 1 to count do
begin

for k := I to sink-I do
reliability~k] := betagamma(betaparsik,1],betaparsik,2]);
evaluate (route, result);
mean == mean + result;

yarn yarn + sqr(result);
k := trunc(20*result);
histoik] = histo~k] + I

end;
writeln(' range frequency');
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for 1 0 to 19 do
writeln(i*0.05:7:2,' to ', (i+1)*0.0S:4:2,hIsta~i]);
mean mean/count;
yarn (varn - count * sqr(mean))/(count - 1);
writein; writeln(I Mean reliability =',mean);
writeln(' Variance estimate =I,varn)
end.

9.5 Procedures to compute beta and gamma functions

The following Pascal procedures are appended In case numerical
values are required for Beta or Gamma functions. They do not form part
of the program for analysing the control structures.

function logama( x :real):real;

fcompute log gamma(x) function I

var
xc, f, z :real;

begin
xc :=X;
if xc >= 7.0 then f 0.0
else
begin

f 1.0;
z xc;
while z < 7.0 do
begin

xc z;
f fsz;
z z + 1.0

end;
xc xc + 1.0;
f -ln(f)

end;
z :=i.0/sqr(xc);
logama := f + (xc-0.S)*ln(xc) -xc + 0.918938533 +

(((4.0*z-3.Osz)*z-14.0)*z+420.0)/(5040.O*xc)
end;

function logbeta( p, q:real):real;

{compute complete log beta function

begin
logbeta l ogama(p) + logama(q) -logama(p+q)

end;



function betain( x, p, q, zeta real; var ifault :integer):real;

Ccompute incomplete beta function ratio for argument x between
0 and I and for p, q positive

label
3, 4, 5;

cons t
accuracy = I.Oe-8;

var
index ,ok :boolean;
psq, cx, pp, qq, xx, term, ai, rx, temp, beta real;
ns : integer;

begin
beta := x;
ifault :=0;
if (p <= 0.0) or (q <= 0.0) then ifault := ;
if (x < 0.0) or (x > 1.0) then ifault := 2;
ok := ifault =0;
if ok and (x <> 0.0) and (x <> 1.0) then
begin

psq :p + q
cx 1.0 - X

index := p < psq*x;
if index then
begin

xx :cx;
cx :x;

pp q;
qq p

end
else
begin

xx :=x;

pp P;
qq q

end;
term 1.0;
at : 1.0;
beta := 1.0;
ns trunc(qq + cxepsq);
rx :xx/cx;

3: temp :=qq -a;

if ns =0 then rx := xx;
4: term termstemp*rx/(Pp+ai);

beta :beta + term;
temp abs(term);
If (temp <= accuracy) and (temp <= accuracysbeta) then goto 5;
at al + 1.0;
ns ns - 1;
if ns >= 0 then goto 3;
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temp :=psq;
psq :=psq + 1.0;
goto 4;

Sz beta :=betasexp(pp*ln(xx)+(qq-1.0)*ln(cx) -zeta)/pp;

If index then beta :=1.0 - beta
end;
betain :=beta

end;

function betafn( x, p, q :real):real;

{ compute incomplete beta function ratio, see change below
(for how to compute the incomplete beta function itself.I

var
a, r :real;
j :integer;

begin
r logbeta(p,q);
a betain(x,p,q,r,j);
If j = 0 then betafn :=a ( for beta function replace a

{ with :=asexp(r)
else
begin
writeln('Error in incomplete beta function');
writeln('x=',x:4,' should be between 0 and V');
writeln('p=',p:4,' should be > 0');
writeln('q=',q:4,' should be > 0')

end
end;
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